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This work is devoted to investigating the problem of optimal control by initial data 
in one-dimensional elastic-plastic models. We consider dynamic elastic-plastic problems 
for rods and cylindrical shells with axial symmetry. We must select initial data such that 
the values of the solution at a given moment in time differ as little as possible from pre- 
scribed values. The existence of the solution for the problem formulated is proved. We 
construct a family of auxiliary problems and establish results on the convergence of the 
solutions. In dynamics problems it is possible to advance the initial data as the control 
function. An entire series of works is devoted to the problem of optimal control in the 
theory of elasticity (see, for example, [i, 2] and the bibliographies therein). The ab- 
sence of similar results for elastic-plastic problems is explained by the difficulty in 
substantiating the validity of the initial models [3]. In this work, we present a pos- 
sible formulation of dynamic elastic-plastic optimal control problems. We find the con- 
ditions on the external data and initial conditions for which the problem of optimal con- 
trol has a solution. 

i. Formulation of the problem of elastic-plastic deformation of a rod consists of 
the following [4-6]. In the region Q = (a, b) • (0, T) we must find functions u, w, n, 
m, ~i, <2 satisfying 

u t - n x = A ,  w t - - r n ~ = A ;  ( 1 . 1 )  

u~ = nt + ~ ,  - w ~  = mt + g~; ( 1 . 2 )  

(1)(n, m) ~ 0 ;  (1.3) 

gl(~ - n) + ~ ( ~  - m) <~ 0 V(n, m), q'(n, m) ~< O; (1.4) 

U ~ ~0, ta = W0, rt = no, /~ ----- ra 0 for t = 0; (1.5) 

n = m = m x = 0 for  x = a, b. ( 1 . 6 )  

Here  ~: R 2 + R i s  a g i v e n  c o n v e x ,  c o n t i n u o u s  f u n c t i o n  wh ich  c h a r a c t e r i z e s  t h e  t r a n s i t i o n  
t o  t h e  p l a s t i c  s t a t e ;  f l ,  f2  a r e  e x t e r n a l  f o r c e s ;  u ,  w a r e  t h e  t a n g e n t i a l  and n o r m a l  v e l o -  
c i t i e s  o f  p o i n t s  on t h e  r o d ;  n ,  m a r e  t h e  i n t e r n a l  f o r c e  and t h e  b e n d i n g  moment,  r e s p e c t i v e -  
l y .  The s u b s c r i p t s  t and x d e n o t e  d i f f e r e n t i a t i o n .  E q u a t i o n  ( 1 . 1 )  i s  t h e  e q u a t i o n  o f  
m o t i o n ;  ( 1 . 2 )  r e p r e s e n t s  t h e  r a t e s  o f  d e f o r m a t i o n  and c u r v a t u r e  a s  t h e  sum o f  e l a s t i c  and 
p l a s t i c  c o m p o n e n t s ;  ( 1 . 3 )  s i g n i f i e s  t h a t  t h e  unknowns n and m do n o t  go beyond  t h e  l i m i t s  
o f  t h e  y i e l d  s u r f a c e  ~ ( n ,  m) = 0. The i n e q u a l i t y  ( 1 . 4 )  g i v e s  t h e  d i r e c t i o n  o f  t h e  v e c t o r  
(~1 ,  ~2) w i t h  r e s p e c t  t o  t h e  y i e l d  s u r f a c e  and s a t i s f i e s  t h e  p r i n c i p l e  o f  maximum d i s s i p a -  
t i o n  r a t e .  

F i r s t  we w i l l  i n t r o d u c e  some n o t a t i o n ,  and t h e n  we f o r m u l a t e  t h e  p r o b l e m  o f  o p t i m a l  
c o n t r o l  by t h e  i n i t i a l  d a t a .  L e t  H(a, b) = Hi(a, b) • H2(a, b) • H~(a, b) • H~(a, b) (HS(a, b) 
and H~ia , b ) i a r e S o b o l e v s p a c e s ) ,  K = { ( n ,  re) In , m e L 2 ( a ,  b ) ,  ~ ( n ( x ) ,  r e (x ) )  ~ 0} i s  t h e  
s e t  o f  a d m i s s i b l e  moments and i n t e r n a l  f o r c e s ,  W = { ( n ,  m) ln e H 0 Z ( a ,  b ) ,  m e H 0 2 ( a ,  b ) } .  

I t  can  be shown ( s e e  [ 7 ] )  t h a t  i f  ( 0 ,  0) e K, f i ,  f i t  e L2 (Q) ,  V 0 ~ (u0 ,  w0, no ,  m0) e 
H(a, b ) ,  ( n o ,  m 0) e K, t h e n  t h e r e  e x i s t  u n i q u e  f u n c t i o n s  u ,  w, n ,  m s a t i s f y i n g  ( 1 . 1 ) ,  i n i -  
t i a l  c o n d i t i o n s  ( 1 . 5 )  and t h e  i n e q u a l i t y  
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[nt, n - - n ] +  [mr, ~n--m] ~ [w, m--'xx--mxx] + [u, n~-- n x ] ~ O  

v(n, m) ~ L~(0, T; Kn W). (1.7) 

(n(t), m(t)) does not leave the yield surface: (n(t), m(t)) e K almost everywhere on (0, 
T). Here [', .] is the scalar product in L2(Q). Inequality (1.7) was obtained from (1.2) 
and (1.4) by eliminating gl and $2, integrating by parts and using boundary conditions (1.6). 

We formulate the problem of optimal control by initial data in the following way. Let 
a convex, closed, and bounded set U c H( a, b) be given such that if V 0 m (u0, w 0, n o , m 0) e 
U, then (n o , m 0) e K. We denote the norm on the spaces L2( a, b) and [L2( a, b)] 4 by H'li0, 
and the solution V ~ (u, w, n, m) at time T by V(T). Let a function V, e[L=( h, b)] 4 be 
given. We require initial data V 0 e U such that the deviation of V(T) from V, is minimized. 
In other words, we must solve the problem 

inf J(Vo) ( 1 . 8 )  
Vo~ U 

(J(V 0) = IIV(T) - V*ll0). The following is true: 

THEOREM i. Let (0, O) E K, fi, fit E L2(Q). Then there exists a solution to the op- 
timal control problem (1.8). 

We sketch the proof of this assertion. First of all it is necessary to establish an 
estimate of the solution based on the initial data. To do this, an auxiliary problem with 
penalties is examined and an estimate for it is established which is uniform in the penalty 
parameter. The concluding part of the proof is based on an analysis of a minimizing se- 
quence. Let us now examine the auxiliary problem with penalties. Let g be a positive param- 
eter, P = (Pl, P2) be the penalty operator, associated with the set K and acting from 
[L2( a, b)] 2 to [L2( a, b] 2 [8]. In the region Q we must find functions u s , w E, n ~, m ~ satis- 
fying 

8 

~ - ~ = 7t, ~ -  ~ L  = / ~ ;  
t e t e 

n~ - -  ~ i T Pl  (n~, m~) = 0, m~ + w ~  + T P~ ( n ,  m 9 = 0 

(t.9) 

(1.io) 

with initial and boundary conditions 

Ue = Uo, W~ = ~V0, n~ = no, m ~ = m o for  t = 0, 

n ~ = m e = m~ = 0 for X = a,b. 

An a priori estimate of the boundary problem formulated here is obtained in the following 
way. First we multiply (1.9) and (i.i0) by u s , w e , n E, m s , respectively, and then differen- 
tiate the resultant equations by t and multiply, respectively, by ut ~, wtg, ntS , mrS. In 

this case, terms containing the penalty operator are nonnegative [8]. Furthermore Vtg(O ) 
must be uniformly bounded in [L2( a, b)] 4, as a consequence of (1.9) and (I.i0). The dif- 
ferentiability of (1.9) and (i.i0) by t can be established by enlisting the Galerkin method 
for proof of the existence of the solution. The final estimate has the form 

max [lIve(t)ll~ + t]V~(t)tt~} ,~c (T, fz, ]~, Vo). 
O ~ I ~ T  

Here the dependence of the constant c on T, fl, f2, and Y 0 has been made explicit. Note 
that c does not depend on s. In accordance with this estimate we select from the sequence 
V e, Vt g a subsequence which *-weakly converges in L2(O, T; [L2( a, b)] 4) for e + O. The 
limiting function V Satisfies (i.i) and (1.7) with initial conditions (1.5), for which 
(n(t), m(t)) e K. The following estimate holds: 

max {ll V (t)I1~ + I] Vt (t)Il~} < c (T, ]~, /2, Vo). 
0r ( 1 . 1 1 )  

I n e q u a l i t y  ( 1 . 1 1 )  a l l o w s  u s  t o  p r o v e  t h e  s o l v a b i l i t y  o f  t h e  f o r m u l a t e d  o p t i m a l  c o n t r o l  p r o b -  
l em ( 1 . 8 ) .  L e t  v 0 i  be  a m i n i m i z i n g  s e q u e n c e .  I t  i s  b o u n d e d  i n  t h e  s p a c e  H( a, b )  a n d  t h e r e -  
f o r e  b y  s e l e c t i n g  t h e  a p p r o p r i a t e  s u b s e q u e n c e  we c a n  a s s u m e  t h a t  V0 i + V 0 w e a k l y  i n  H ( ' a ,  b )  
and  s t r o n g l y  i n  [ L 2 ( a ,  b ) ]  4.  Due t o  t h e  weak  c l o s u r e  o f  t h e  s e t  U we h a v e  V0" e U. M o r e -  
o v e r ,  i t  c a n  be  shown t h a t  t h e  s o l u t i o n  t o  t h e  p r o b l e m  V i c o r r e s p o n d i n g  t o  V01 a l s o  c o n -  
v e r g e s  t o  V, w i t h  i n i t i a l  d a t a  V 0. The  s u b s t a n t i a t i o n  o f  t h i s  f a c t  a n d  t h e  l i m i t i n g  t r a n s -  
f o r m a t i o n  a r e  b a s e d  on an  a p r i o r i  e s t i m a t e  o f  t h e  f o r m  ( 1 . 1 1 ) .  The  c o n c l u d i n g  p a r t  o f  
t h e  p r o o f  u s e s  t h e  p r o p e r t y  o f  weak  s e m i c o n t i n u i t y  f r o m  b e l o w  o f  t h e  f u n c t i o n a l  
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d ~ in[ J (Vl) = lim J (V~) = lim II V~ (r)  - -  V,  1[o ~ I[ V (T) - -  V.  IIo i> d. 
Vx~U 

I t  f o l l o w s  t h a t  t h e  i n i t i a l  v a l u e  Y 0 i s  s u c h  t h a t  t h e  d i f f e r e n c e  V(T) - V,  i s  m i n i m a l .  

2 .  We e x a m i n e  t h e  c a s e  o f  an  e l a s t i c - p l a s t i c  s h e l l .  L e t  t h e  s e t  K be  d e f i n e d  a s  i n  
S e c .  1,  u s i n g  t h e  f u n c t i o n  ~ and  W = { ( n ,  m) ln �9 L 2 ( a ,  b ) ,  m �9 H02( a, b ) } .  The s t a t e m e n t  
o f  t h e  p r o b l e m  o f  e l a s t i c - p l a s t i c  d e f o r m a t i o n  o f  a c y l i n d r i c a l  s h e l l  w i t h  a x i a l  s y m m e t r y  
c o n s i s t s  o f  t h e  f o l l o w i n g .  I n  t h e  r e g i o n  Q we m u s t  f i n d  f u n c t i o n s  w, n ,  m, ~1,  ~2 s a t i s -  
f y i n g  

wt -- mxx -- n =1; (2.1) 

- -w = n, -t- ~1, --wx~ = mt + ~2; ( 2 . 2 )  

~P(n, m) ~ O; 

~1~ - -  n) q- ~(~n - -  m) ~ 0 v ( n ,  m), O(n, m) ~ O, 

and a l s o  s a t i s f y i n g  t h  e i n i t i a l  and  b o u n d a r y  c o n d i t i o n s  

(2.])  

(2.4) 

W : /gO, 7Z : no, /r~ =- m o for  t ~ 0; 

m : m x = 0 f o r  x ~ a, b 

(2.5) 

(2.6) 

(w is the rate of normal deflection, m is the bending moment, n is the circumferential 
force). 

The solvability of (2.1)-(2.6) can be proved [7]. In this case there exist functions 
w, n, m satisfying (2.1), initial conditions (2.5) and the inequality 

[ m . m - - m l +  [n~, ~ - n l +  [w, F a ~ - m ~ l +  [ w , n - n l ~ > O  

v ( n ,  m ) ~  L2(O, T; g N W), (n(t), re(t))~ K. 

The problem of optimal control by initial data consists of selecting from amongst the 
elements of the closed, convex, and bounded set U~H2(a,b) XL2(a,b)XH~(a,b ) those elements 
such that the difference between the values of the solution at time T and the given func- 
tion V, E [L2( a, b)] 3 is minimized. In other words, we must find the solution to 

inf [I V (T) - -  V.  [!o, ( 2 . 7 )  
VoEU 

w h e r e  V c o r r e s p o n d s  t o  t h e  i n i t i a l  d a t a  V o. 

THEOREM 2.  L e t  ( 0 ,  0)  �9 K,  f ,  f t  e L 2 ( Q ) ,  and  t h e  s e t  U be s u c h  t h a t  i f  (w o, n o , m o) �9 
U, t h e n  ( n o ,  m 0) �9 K. Then a s o l u t i o n  t o  t h e  o p t i m a l  c o n t r o l  p r o b l e m  ( 2 . 7 )  e x i s t s .  

The outline for the proof is the same as that for Theorem i. We first examine the 
auxiliary problem with penalties and establish an a priori estimate of the solution using 
the initial data, and then carry out a transformation in the limit of the penalty parameter. 
Then in conclusion we construct a sequence of initial values which converges to the solu- 
tion of (2.7). 
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THEORY OF PLASTIC DEFORMATION FOR MULTICOMPONENT POROUS MEDIA 

A. V. Krivko and A. Yu. Smyslov UDC 539.374 

The creation of dispersed-reinforced materials having specific technical properties 
is achieved by the bonding of heterogeneous metals through plastic deformation of powdered 
mixtures. The properties of the composites formed in this way are qualitatively distin- 
guished from those of the component materials. To a significant degree this is due to the 
presence of pores. Theoretical models of the plastic deformation of porous media can be 
used in the choice of methods and regimes of pressure moulding employed to obtain quality 
manufactured products. In this work we investigate the features of plastic deformation 
of porous media containing dispersed inclusions. A method is employed which gives an ap- 
proximate expression for the composite dissipation function [1-8]. We obtain the conditions 
under which the inclusions behave as rigid particles or deform together with the matrix. 

I. We examine a rigid-plastic material made up of a connecting matrix with a uniform 
distribution of inclusions and pores in it. The matrix and inclusions satisfy the von Mises 
condition with plastic flow limits k 0 and kl, respectively. The problem consists of con- 
structing approximate expressions for the composite dissipation function D*(<Eij>) , which 

in combination with an associated stress rule <oij> = 8D*/8<Eij> determines the plasticity 
conditions [1-8]. Here oij, Eij are components of the stress and plastic strain rate ten- 

sors, and the angular brackets denote averaging of the field over the material volume. 

The dissipation function of the macroscopic medium D*(<Eij>) is obtained as the minimum 
value of the dissipation rate in a unit of macroscopic volume V of the porous body: 

D = -f-  k o g ~ dV + -v" kl ]/r ~ dV ( 1 . 1 )  
v o V~. 

(V = V S + V 2,  w h e r e  t h e  s o l i d - p h a s e  v o l u m e  i s  V S = V 0 + V1; V 0, V1, a n d  V 2 a r e  t h e  v o l u m e s  
of the matrix, inclusions, and pores, respectively). 

By representing the integral over V 0 in the form of the difference between the in- 
tegrals over V S and VI, we have the functional 

D = k 0 < ~/ei jei2 >s - -  ( k0 - -  kl)  < Ve*je~i h ,  ( i .  2 ) 

w h i c h  f o r  k 1 = k 0 r e d u c e s  t o  t h e  e x p r e s s i o n  f o r  t h e  d i s s i p a t i o n  f u n c t i o n  o f  a p o r o u s  b o d y  
w i t h  a h o m o g e n e o u s  s o l i d  p h a s e  [ 2 ] .  The  i n d i c e s  a f t e r  t h e  a n g u l a r  b r a c k e t s  i n  ( 1 . 2 )  s i g n i f y  
a v e r a g i n g  o v e r  t h e  a p p r o p r i a t e  p h a s e .  

Following [2-7], we employ the approximate relations 

where n = i, 2. Using 2eij = vi, j + vj,i, the value of <sij> 2 is determined by the dis- 
placement rate v i at the pore surface according to the Gauss--Ostrogradskii formula. In 
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