This work is devoted to investigating the problem of optimal control by initial data in one-dimensional elastic-plastic models. We consider dynamic elastic-plastic problems for rods and cylindrical shells with axial symmetry. We must select initial data such that the values of the solution at a given moment in time differ as little as possible from prescribed values. The existence of the solution for the problem formulated is proved. We construct a family of auxiliary problems and establish results on the convergence of the solutions. In dynamics problems it is possible to advance the initial data as the control function. An entire series of works is devoted to the problem of optimal control in the theory of elasticity (see, for example, [1, 2] and the bibliographies therein). The absence of similar results for elastic-plastic problems is explained by the difficulty in substantiating the validity of the initial models [3]. In this work, we present a possible formulation of dynamic elastic-plastic optimal control problems. We find the conditions on the external data and initial conditions for which the problem of optimal control has a solution.

1. Formulation of the problem of elastic-plastic deformation of a rod consists of the following [4-6]. In the region $\mathrm{Q}=(a, \mathrm{~b}) \times(0, \mathrm{~T})$ we must find functions u , w , n , $\mathrm{m}, \xi_{1}, \xi_{2}$ satisfying

$$
\begin{gather*}
u_{t}-n_{x}=f_{1}, w_{t}-m_{x x}=f_{2} \tag{1.1}\\
u_{x}=n_{t}+\xi_{1},-w_{x x}=m_{t}+\xi_{2} ; \tag{1.2}\\
\Phi(n, m) \leqslant 0 \tag{1.3}\\
\xi_{1}(\bar{n}-n)+\xi_{2}(\bar{m}-m) \leqslant 0 \mathrm{~V}(\bar{n}, \bar{m}), \Phi(\bar{n}, \bar{m}) \leqslant 0 ; \tag{1.4}\\
u=u_{0}, w=w_{0}, n=n_{0}, m=m_{0} \text { for } t=0 ; \tag{1.5}\\
n=m=m_{x}=0 \text { for } x=a, b \tag{1.6}
\end{gather*}
$$

Here $\Phi: R^{2} \rightarrow R$ is a given convex, continuous function which characterizes the transition to the plastic state; f_{1}, f_{2} are external forces; u, w are the tangential and normal velocities of points on the rod; n, m are the internal force and the bending moment, respectively. The subscripts t and x denote differentiation. Equation (1.1) is the equation of motion; (1.2) represents the rates of deformation and curvature as the sum of elastic and plastic components; (1.3) signifies that the unknowns n and m do not go beyond the limits of the yield surface $\Phi(n, m)=0$. The inequality (1.4) gives the direction of the vector $\left(\xi_{1}, \xi_{2}\right)$ with respect to the yield surface and satisfies the principle of maximum dissipation rate.

First we will introduce some notation, and then we formulate the problem of optimal control by the initial data. Let $H(a, b)=H^{1}(a, b) \times H^{2}(a, b) \times H_{0}^{1}(a, b) \times H_{0}^{2}(a, b)\left(H^{s}(a, b)\right.$ and $H_{0}^{s}(a, b)$ are Sobolev spaces $), K=\left\{(n, m) \mid n, m \in L^{2}(a, b), \Phi(n(x), m(x)) \leq 0\right\}$ is the set of admissible moments and internal forces, $W=\left\{(n, m) \mid n \in H_{0}{ }^{1}(a, b), m \in H_{0}{ }^{2}(a, b)\right\}$.

It can be shown (see [7]) that if (0, 0) $\in K, f_{i}, f_{i t} \in L^{2}(Q), V_{0} \equiv\left(u_{0}, w_{0}, n_{0}, m_{0}\right) \in$ $H(a, b),\left(n_{0}, m_{0}\right) \in K$, then there exist unique functions u, w, m, m satisfying (1.1), initial conditions (1.5) and the inequality

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 112-115, September-October, 1991. Original article submitted September 15, 1987; revision submitted March 2, 1990.

$$
\begin{gather*}
{\left[n_{t}, \bar{n}-n\right]+\left[m_{i}, \bar{m}-m\right]+\left[w, \bar{m}_{x x}-m_{x x}\right]+\left[u, \bar{n}_{x}-n_{x}\right] \geqslant 0} \\
\mathrm{~V}(\bar{n}, \bar{m}) \Subset L^{2}(0, T ; K \cap W) \tag{1.7}
\end{gather*}
$$

($n(t), m(t)$) does not leave the yield surface: ($n(t), m(t)) \in K$ almost everywhere on (0 , T). Here $[\cdot, \cdot]$ is the scalar product in $\mathrm{L}^{2}(\mathrm{Q})$. Inequality (1.7) was obtained from (1.2) and (1.4) by eliminating ξ_{1} and ξ_{2}, integrating by parts and using boundary conditions (1.6).

We formulate the problem of optimal control by initial data in the following way. Let a convex, closed, and bounded set $U \subset H(a, b)$ be given such that if $V_{0} \equiv\left(u_{0}, W_{0}, n_{0}, m_{0}\right) \varepsilon$ U, then $\left(\mathrm{n}_{0}, \mathrm{~m}_{0}\right) \in \mathrm{K}$. We denote the norm on the $\operatorname{spaces} \mathrm{L}^{2}(a, b)$ and $\left[\mathrm{L}^{2}(a, b)\right]^{4}$ by $\left\|_{\cdot}\right\|_{0}$, and the solution $V \equiv(u, w, n, m)$ at time T by $V(T)$. Let a function $V_{*} \in\left[L^{2}(a, b)\right]^{4}$ be given. We require initial data $V_{0} \in U$ such that the deviation of $V(T)$ from $V *$ is minimized. In other words, we must solve the problem

$$
\begin{equation*}
\inf _{V_{0} \in U} J\left(V_{0}\right) \tag{1.8}
\end{equation*}
$$

$\left(J\left(V_{0}\right)=\|V(T)-V *\|_{0}\right)$. The following is true:
THEOREM 1. Let $(0,0) \in K, f_{i}, f_{i t} \in L^{2}(Q)$. Then there exists a solution to the optimal control problem (1.8).

We sketch the proof of this assertion. First of all it is necessary to establish an estimate of the solution based on the initial data. To do this, an auxiliary problem with penalties is examined and an estimate for it is established which is uniform in the penalty parameter. The concluding part of the proof is based on an analysis of a minimizing sequence. Let us now examine the auxiliary problem with penalties. Let ε be a positive parameter, $p=\left(p_{1}, p_{2}\right)$ be the penalty operator, associated with the set K and acting from $\left[L^{2}(a, b)\right]^{2}$ to $\left[L^{2}(a, b]^{2}[8]\right.$. In the region Q we must find functions $u^{\varepsilon}, w^{\varepsilon}, n^{\varepsilon}$, m^{ε} satisfying

$$
\begin{gather*}
u_{t}^{\varepsilon}-n_{x}^{\varepsilon}=f_{1}, \quad w_{t}^{\varepsilon}-m_{x x}^{\varepsilon}=f_{2} \tag{1,9}\\
n_{t}^{\mathrm{e}}-u_{x}^{\varepsilon}+\frac{1}{\varepsilon} p_{1}\left(n^{\varepsilon}, m^{\varepsilon}\right)=0, \quad m_{t}^{\varepsilon}+w_{x x}^{\varepsilon}+\frac{1}{\varepsilon} p_{2}\left(n^{\varepsilon}, m^{\varepsilon}\right)=0 \tag{1.10}
\end{gather*}
$$

with initial and boundary conditions

$$
\begin{gathered}
u^{\varepsilon}=u_{0}, w^{\varepsilon}=w_{0}, n^{\varepsilon}=n_{0}, m^{\varepsilon}=m_{0} \text { for } t=0 \\
n^{\varepsilon}=m^{\varepsilon}=m_{x}^{\varepsilon}=0 \text { for } \quad x=a, b
\end{gathered}
$$

An a priori estimate of the boundary problem formulated here is obtained in the following way. First we multiply (1.9) and (1.10) by $u^{\varepsilon}, w^{\varepsilon}, n^{\varepsilon}, \mathrm{m}^{\varepsilon}$, respectively, and then differentiate the resultant equations by t and multiply, respectively, by $u_{t}{ }^{\varepsilon}$, $w_{t} \varepsilon, n_{t} \varepsilon$, $m_{t}{ }^{\varepsilon}$. In this case, terms containing the penalty operator are nonnegative [8]. Furthermore $V_{t} \varepsilon(0)$ must be uniformly bounded in $\left[\mathrm{L}^{2}(a, b)\right]^{4}$, as a consequence of (1.9) and (1.10). The differentiability of (1.9) and (1.10) by t can be established by enlisting the Galerkin method for proof of the existence of the solution. The final estimate has the form

$$
\max _{0 \leqslant t \leqslant T}\left\{\left\|V^{\varepsilon}(t)\right\|_{0}^{2}+\left\|V_{t}^{2}(t)\right\|_{0}^{2}\right\} \leqslant c\left(T, f_{1}, f_{2}, V_{0}\right)
$$

Here the dependence of the constant c on T, f_{1}, f_{2}, and V_{0} has been made explicit. Note that c does not depend on ε. In accordance with this estimate we select from the sequence $V^{\varepsilon}, V_{t}{ }^{\varepsilon}$ a subsequence which *-weakly converges in $L^{2}\left(0, T ;\left[L^{2}(a, b)\right]^{4}\right)$ for $\varepsilon \rightarrow 0$. The limiting function V satisfies (1.1) and (1.7) with initial conditions (1.5), for which $(n(t), m(t)) \in K$. The following estimate holds:

$$
\begin{equation*}
\max _{0 \leqslant t \leqslant T}\left\{\|V(t)\|_{0}^{2}+\left\|V_{t}(t)\right\|_{0}^{2}\right\} \leqslant c\left(T, f_{1}, f_{2}, V_{0}\right) \tag{1.11}
\end{equation*}
$$

Inequality (1.11) allows us to prove the solvability of the formulated optimal control problem (1.8). Let $V_{0} i$ be a minimizing sequence. It is bounded in the space $H(a, b)$ and therefore by selecting the appropriate subsequence we can assume that $V_{0}{ }^{i} \rightarrow V_{0}$ weakly in $H\left({ }^{\prime} a\right.$, b) and strongly in $\left[L^{2}(a, b)\right]^{4}$. Due to the weak closure of the set U we have $V_{0} \in U$. Moreover, it can be shown that the solution to the problem V^{i} corresponding to $V_{0}{ }^{i}$ also converges to V, with initial data V_{0}. The substantiation of this fact and the limiting transformation are based on an a priori estimate of the form (1.11). The concluding part of the proof uses the property of weak semicontinuity from below of the functional

$$
d \equiv \inf _{V_{1} \in U} J\left(V_{1}\right)=\underline{\lim } J\left(V_{0}^{i}\right)=\underline{\lim }\left\|V^{i}(T)-V_{*}\right\|_{0} \geqslant\left\|V(T)-V_{*}\right\|_{0} \geqslant d .
$$

It follows that the initial value V_{0} is such that the difference $V(T)-V *$ is minimal.
2. We examine the case of an elastic-plastic shell. Let the set K be defined as in Sec. 1, using the function Φ and $W=\left\{(n, m) \mid n \in L^{2}(a, b), m \in H_{0}{ }^{2}(a, b)\right\}$. The statement of the problem of elastic-plastic deformation of a cylindrical shell with axial symmetry consists of the following. In the region Q we must find functions $w, n, m, \xi_{1}, \xi_{2}$ satisfying

$$
\begin{gather*}
w_{t}-m_{x x}-n=f \tag{2.1}\\
-w=n_{t}+\xi_{1},-w_{x x}=m_{t}+\xi_{2} \tag{2.2}\\
\Phi(n, m) \leqslant 0 \tag{2.3}\\
\xi_{1}(\bar{n}-n)+\xi_{2}(\bar{m}-m) \leqslant 0{ }_{\forall}(\bar{n}, \bar{m}), \Phi(\bar{n}, \bar{m}) \leqslant 0 \tag{2.4}
\end{gather*}
$$

and also satisfying th einitial and boundary conditions

$$
\begin{gather*}
w=w_{0}, n=n_{0}, m=m_{0} \text { for } t=0 \tag{2.5}\\
m=m_{x}=0 \text { for } x=a, b \tag{2.6}
\end{gather*}
$$

(w is the rate of normal deflection, m is the bending moment, n is the circumferential force).

The solvability of (2.1)-(2.6) can be proved [7]. In this case there exist functions $\mathrm{w}, \mathrm{n}, \mathrm{m}$ satisfying (2.1), initial conditions (2.5) and the inequality

$$
\begin{gathered}
{\left[m_{t}, \bar{m}-m\right]+\left[n_{t}, \bar{n}-n\right]+\left[w, \bar{m}_{x x}-m_{x x}\right]+[w, \bar{n}-n] \geqslant 0} \\
\mathrm{~V}(\bar{n}, \bar{m}) \in L^{2}(0, T ; K \cap W),(n(t), m(t)) \in K
\end{gathered}
$$

The problem of optimal control by initial data consists of selecting from amongst the elements of the closed, convex, and bounded set $U \subset H^{2}(a, b) \times L^{2}(a, b) \times H_{0}^{2}(a, b)$ those elements such that the difference between the values of the solution at time T and the given function $\mathrm{V}_{*} \in\left[\mathrm{~L}^{2}(a, b)\right]^{3}$ is minimized. In other words, we must find the solution to

$$
\begin{equation*}
\inf _{V_{0} \in U}\left\|V(T)-V_{*}\right\|_{0} \tag{2,7}
\end{equation*}
$$

where V corresponds to the initial data V_{0}.
THEOREM 2. Let $(0,0) \in K, f, f_{t} \in L^{2}(Q)$, and the set U be such that if $\left(w_{0}, n_{0}, m_{0}\right) \in$ U, then $\left(n_{0}, m_{0}\right) \in K$. Then a solution to the optimal control problem (2.7) exists.

The outline for the proof is the same as that for Theorem 1 . We first examine the auxiliary problem with penalties and establish an a priori estimate of the solution using the initial data, and then carry out a transformation in the limit of the penalty parameter. Then in conclusion we construct a sequence of initial values which converges to the solution of (2.7).

LITERATURE CITED

1. V. A. Troitskii and L. V. Petukhov, Optimization of Forms for Elastic Bodies [in Russian], Nauka, Moscow (1982).
2. N. V. Banichuk, S. Yu. Ivanova, and A. V. Sharanyuk, Construction Dynamics: Analysis and Optimization [in Russian], Nauka, Moscow (1989).
3. G. Duvant and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, New York (1975).
4. M. I. Erkhov, Theory of Ideal Plastic Bodies and Construction [in Russian], Nauka, Moscow (1982).
5. V. N. Mazalov and Yu. V. Nemirovskii, "Dynamics of thin plastic constructions," in: Problems in the Dynamics of Elastic-Plastic Media [in Russian], Mir, Moscow (1975).
6. G. V. Ivanov, "Equations of an ideal elastic-plastic deforming shell in problems of contact and coupling to other bodies," in: Dynamics of Continuous Media: a Collection of Scientific Works [in Russian], Siberian Branch of the Academy of Sciences of the USSR, Hydrodynamics Inst., No. 45 (1980).
7. A. M. Khludnev, "Existence of solutions to the problems of the dynamics of one-dimensional plastic constructions," Zh. Prikh. Mekh. Tekh. Fiz., No. 2 (1983).
8. J. L. Lions, Some Methods for the Solution of Nonlinear Boundary-Value Problems [Russian translation], Mir, Moscow (1972).

THEORY OF PLASTIC DEFORMATION FOR MULTICOMPONENT POROUS MEDIA
A. V. Krivko and A. Yu. Smyslov

UDC 539.374

The creation of dispersed-reinforced materials having specific technical properties is achieved by the bonding of heterogeneous metals through plastic deformation of powdered mixtures. The properties of the composites formed in this way are qualitatively distinguished from those of the component materials. To a significant degree this is due to the presence of pores. Theoretical models of the plastic deformation of porous media can be used in the choice of methods and regimes of pressure moulding employed to obtain quality manufactured products. In this work we investigate the features of plastic deformation of porous media containing dispersed inclusions. A method is employed which gives an approximate expression for the composite dissipation function [1-8]. We obtain the conditions under which the inclusions behave as rigid particles or deform together with the matrix.

1. We examine a rigid-plastic material made up of a connecting matrix with a uniform distribution of inclusions and pores in it. The matrix and inclusions satisfy the von Mises condition with plastic flow limits k_{0} and k_{1}, respectively. The problem consists of constructing approximate expressions for the composite dissipation function $D^{*}\left(\left\langle\varepsilon_{i j}\right\rangle\right)$, which in combination with an associated stress rule $\left\langle\sigma_{i j}\right\rangle=\partial D^{*} / \partial\left\langle\varepsilon_{i j}\right\rangle$ determines the plasticity conditions [1-8]. Here $\sigma_{i j}, \varepsilon_{i j}$ are components of the stress and plastic strain rate tensors, and the angular brackets denote averaging of the field over the material volume.

The dissipation function of the macroscopic medium $\mathrm{D} *\left(\left\langle\varepsilon_{i j}\right\rangle\right)$ is obtained as the minimum value of the dissipation rate in a unit of macroscopic volume \vec{V} of the porous body:

$$
\begin{equation*}
D=\frac{1}{V} \int_{V_{0}} k_{0} \sqrt{\varepsilon_{i j} \varepsilon_{i j}} d V+\frac{1}{V} \int_{V_{i}} k_{1} \sqrt{\varepsilon_{i j} \varepsilon_{i j}} d V \tag{1.1}
\end{equation*}
$$

($\mathrm{V}=\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{2}$, where the solid-phase volume is $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{0}+\mathrm{V}_{1} ; \mathrm{V}_{0}, \mathrm{~V}_{1}$, and V_{2} are the volumes of the matrix, inclusions, and pores, respectively).

By representing the integral over V_{0} in the form of the difference between the integrals over V_{S} and V_{1}, we have the functional

$$
\begin{equation*}
D=k_{0}\left\langle\sqrt{\varepsilon_{i j} \varepsilon_{i j}}{ }_{\mathrm{S}}-\left(k_{0}-k_{1}\right)\left\langle\sqrt{\varepsilon_{i j} \varepsilon_{i j}}\right\rangle_{1},\right. \tag{1.2}
\end{equation*}
$$

which for $k_{1}=k_{0}$ reduces to the expression for the dissipation function of a porous body with a homogeneous solid phase [2]. The indices after the angular brackets in (1.2) signify averaging over the appropriate phase.

Following [2-7], we employ the approximate relations

$$
\begin{equation*}
\left\langle\sqrt{\varepsilon_{i j} \varepsilon_{i j}}\right\rangle_{\mathrm{S}} \approx \sqrt{\left\langle\varepsilon_{i j} \varepsilon_{i j}\right\rangle_{\mathrm{S}}},\left\langle\varepsilon_{i j} \varepsilon_{i j}\right\rangle_{n} \approx\left\langle\varepsilon_{i j}\right\rangle_{n}\left\langle\varepsilon_{i j}\right\rangle_{n} \tag{1.3}
\end{equation*}
$$

where $n=1,2$. Using $2 \varepsilon_{i j}=v_{i, j}+v_{j, i}$, the value of $\left\langle\varepsilon_{i j}\right\rangle_{2}$ is determined by the displacement rate v_{i} at the pore surface according to the Gauss-Ostrogradskii formula. In

Kuibyshev. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 115-120, September-October, 1991. Original article submitted May 30, 1990.

